
The Special Theory of Relativity is based on two postulates:

1. The laws of physics have the same form in all inertial systems.

2. The speed of light in a vacuum is the same for all observers.

Mathematically, this means that the laws of physics must be formulated in terms
of physical quantities which obey the Lorentz transformations. The basic build-
ing blocks to construct such quantities are four-vectors. A four-vector V µ =
(V 0,V 1,V 2,V 3) = (V 0, ~V ) has 4 components: one ”time-like” component V 0,
and three ”space-like” components (V 1,V 2,V 3) or ~V which are analogous to or-
dinary vectors in Newtonian physics. The Lorentz transformations then state that
if one observer measures the quantities V µ, a second observer who moves at con-
stant velocity v in a particular direction (say, the x-direction) will measure the
quantities V ′µ, given by
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V ′2 = V 2 (3)
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where

γ =
1√

1−v2/c2
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is the Lorentz factor. Also, the product

V =
3∑

µ,ν=0

ηµνV
µV ν (6)

defines a quantity, called a Lorentz scalar which remains invariant under Lorentz
transformations; indeed you can verify that

∑
µ,ν ηµνV

µV ν =
∑

µ,ν ηµνV
′µV ′ν .

Here,

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (7)

is called the Minkowski metric. The most fundamental four-vector is the space-
time position xµ = (x0,x1,x2,x3) = (ct,~x) = (ct,x,y,z). With the infinitesimal



displacements dxµ we can then define the Lorentz scalar dτ , called the proper
time, as

c2dτ2 =−
∑
µ,ν

ηµνdxµdxν = c2dt2−dx2−dy2−dz2 (8)

=
(
c2−v2)dt2. (9)

Therefore, dt = γdτ . The proper time allows us to construct the velocity four-
vector uµ

uµ = (u0,~u) =
dxµ

dτ
=

(
c
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dτ
,
d~x
dτ

)
= (γc,γ~v), (10)

and the momentum four-vector pµ

pµ = (p0, ~p) =muµ = (γmc,γm~v). (11)

The spatial part of pµ is obviously a relativistic version of the Newtonian mo-
mentum. But what is the temporal component γmc? To answer this, consider a
system on which no external forces act. Analogous to Newtonian physics, the to-
tal four-momentum of this system will be constant. Again the spatial components
correspond to conservation of ordinary momentum. But we know from classical
physics that the energy of the system will also be conserved. Therefore, the ad-
ditional temporal constant is nothing else than the conservation of energy, up to a
factor c. Thus

E = cp0 = γmc2 =
mc2√

1−v2/c2
. (12)

As a side note, the conservation of momentum and energy are closely related to
symmetries: if a system behaves the same regardless of where it is (translation
invariance), momentum is conserved; if it behaves the same regardless of when
we observe it (time invariance), energy is conserved. This further justifies the fact
that p0 is indeed proportional to E.

If we set the velocity ~v = 0, the energy reduces to E0 = mc2. So, unlike
the Newtonian case, a system that isn’t moving still possesses an internal energy,
related to its mass. Also, from the Lorentz scalar∑

µ,ν

ηµνp
µpν =−E2/c2 + |~p|2 =−γ2m2c2 +γ2m2v2 =−m2c2, (13)

we obtain the relation

E2 =m2c4 + |~p|2c2. (14)



For small velocities, the energy reduces to

E =
mc2√

1−v2/c2
≈mc2 +

1
2
mv2 + . . . . (15)

We see that the second term is the non-relativistic kinetic energy. Finally, you can
verify that

d~p ·~v = d(γm~v) ·~v =
(
γ3m

v2

c2 +γm

)
~v ·d~v = γ3m~v ·d~v = dE, (16)

which is the relativistic version of the work-energy theorem in classical physics.


