Posted: Dec 26, 2010 3:58 pm
by The Damned
twistor59 wrote:
The Damned wrote:
In topology linearity is quite important. Hence the Fields medal have you seen the proof for that in computer graphics the Pearlman thing I thought it was beyond brilliant, I wish I could even approach thinking like that!


No, what's that about ?


http://en.wikipedia.org/wiki/Grigori_Perelman

Sorry Perelman, dyslexia is a curse.

There was a graphical representation of his topology of dimensions that could support the proof. An Mpeg describing the folding of a sphere in 3 dimensions it was amazingly complex and yet brilliantly elegant.

I can't find it atm but it is fascinating.

The problem
Main article: Poincaré conjecture

The Poincaré conjecture, proposed by French mathematician Henri Poincaré in 1904, was the most famous open problem in topology. Any loop on a three-dimensional sphere—as exemplified by the set of points at a distance of 1 from the origin in four-dimensional Euclidean space—can be contracted to a point. The Poincaré conjecture asserts that any closed three-dimensional manifold such that any loop can be contracted to a point is topologically a three-dimensional sphere. The analogous result has been known to be true in dimensions greater than or equal to five since 1960 (work of Stephen Smale). The four-dimensional case resisted longer, finally being solved in 1982 by Michael Freedman. But the case of three-manifolds turned out to be the hardest of them all. Roughly speaking, this is because in topologically manipulating a three-manifold, there are too few dimensions to move "problematic regions" out of the way without interfering with something else.

In 1999, the Clay Mathematics Institute announced the Millennium Prize Problems: $1,000,000 prizes for the proof of any of seven conjectures, including the Poincaré conjecture. There was a wide agreement that a successful proof of any of these would constitute a landmark event in the history of mathematics.
[edit] Perelman's proof
Main article: Solution of the Poincaré conjecture

In November 2002, Perelman posted the first of a series of eprints to the arXiv, in which he claimed to have outlined a proof of the geometrization conjecture, of which the Poincaré conjecture is a particular case.[10][11][12]

Perelman modified Richard Hamilton's program for a proof of the conjecture, in which the central idea is the notion of the Ricci flow. Hamilton's basic idea is to formulate a "dynamical process" in which a given three-manifold is geometrically distorted, such that this distortion process is governed by a differential equation analogous to the heat equation. The heat equation describes the behavior of scalar quantities such as temperature; it ensures that concentrations of elevated temperature will spread out until a uniform temperature is achieved throughout an object. Similarly, the Ricci flow describes the behavior of a tensorial quantity, the Ricci curvature tensor. Hamilton's hope was that under the Ricci flow, concentrations of large curvature will spread out until a uniform curvature is achieved over the entire three-manifold. If so, if one starts with any three-manifold and lets the Ricci flow occur, eventually one should in principle obtain a kind of "normal form". According to William Thurston, this normal form must take one of a small number of possibilities, each having a different kind of geometry, called Thurston model geometries.

This is similar to formulating a dynamical process that gradually "perturbs" a given square matrix, and that is guaranteed to result after a finite time in its rational canonical form.

Hamilton's idea attracted a great deal of attention, but no one could prove that the process would not be impeded by developing "singularities", until Perelman's eprints sketched a program for overcoming these obstacles. According to Perelman, a modification of the standard Ricci flow, called Ricci flow with surgery, can systematically excise singular regions as they develop, in a controlled way.

We know that singularities (including those that, roughly speaking, occur after the flow has continued for an infinite amount of time) must occur in many cases. However, any singularity that develops in a finite time is essentially a "pinching" along certain spheres corresponding to the prime decomposition of the 3-manifold. Furthermore, any "infinite time" singularities result from certain collapsing pieces of the JSJ decomposition. Perelman's work proves this claim and thus proves the geometrization conjecture.
[edit] Verification


Perelman lives with his mother, refused the $1,000,000 prize and any career in practically any University and is only interested in exploring maths.

Strangely noble. he is a maverick though he fell out with the maths establishment because they were just not his kind of people. Probably worked out well for him. Einstein kind of did the same thing just through sheer laziness. :D

http://www.math.ucla.edu/~tao/285g.1.08s/

I think this something close to the proof.

[youtube]http://www.youtube.com/watch?v=R_w4HYXuo9M&
[/youtube]